Next Article in Journal
Correction: Combination of Discrete Element Method and Artificial Neural Network for Predicting Porosity of Gravel-Bed River. Water 2019, 11(7), 1461
Next Article in Special Issue
Cyanobacterial Blooms in Lake Varese: Analysis and Characterization over Ten Years of Observations
Previous Article in Journal
Real-Time Control of Urban Water Cycle under Cyber-Physical Systems Framework
Previous Article in Special Issue
Linking Stoichiometric Organic Carbon–Nitrogen Relationships to planktonic Cyanobacteria and Subsurface Methane Maximum in Deep Freshwater Lakes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Effects of Light Intensity and Exposure Period on the Growth and Stress Responses of Two Cyanobacteria Species: Pseudanabaena galeata and Microcystis aeruginosa

1
Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
2
Institute for studies of the Global Environment, 7-1 Sophia University, Kioicho, Chiyoda, Tokyo 102-0094, Japan
3
Institute Hydro Technology Institute, 4-3-1 Shiroyama Trust Tower, Tranomon, Minato, Tokyo 105-0001, Japan
4
Research and Development Center, Nippon Koei, 2304 Inarihara, Tsukuba, Ibaraki 300-1259, Japan
5
Provincial Government, Ministry of Physical Infrastructure Development, Gandaki Province, Pokhara 33700, Nepal
6
Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
*
Author to whom correspondence should be addressed.
Water 2020, 12(2), 407; https://doi.org/10.3390/w12020407
Submission received: 29 November 2019 / Revised: 28 January 2020 / Accepted: 31 January 2020 / Published: 3 February 2020
(This article belongs to the Special Issue Advancing Knowledge on Cyanobacterial Blooms in Freshwaters)

Abstract

:
Light is an important factor that affects cyanobacterial growth and changes in light can influence their growth and physiology. However, an information gap exists regarding light-induced oxidative stress and the species-specific behavior of cyanobacteria under various light levels. This study was conducted to evaluate the comparative effects of different light intensities on the growth and stress responses of two cyanobacteria species, Pseudanabaena galeata (strain NIES 512) and Microcystis aeruginosa (strain NIES 111), after periods of two and eight days. The cyanobacterial cultures were grown under the following different light intensities: 0, 10, 30, 50, 100, 300, and 600 μmol m−2 s−1. The optical density (OD730), chlorophyll a (Chl-a) content, protein content, H2O2 content, and the antioxidative enzyme activities of catalase (CAT) and peroxidase (POD) were measured separately in each cyanobacteria species. P. galeata was negatively affected by light intensities lower than 30 μmol m−2 s−1 and higher than 50 μmol m−2 s−1. A range of 30 to 50 μmol m−2 s−1 light was favorable for the growth of P. galeata, whereas M. aeruginosa had a higher tolerance for extreme light conditions. The favorable range for M. aeruginosa was 10 to 100 μmol m−2 s−1.

1. Introduction

Eutrophication and global warming have promoted the growth of cyanobacteria in freshwater systems worldwide, and this trend is expected to increase in the future [1]. Cyanobacterial blooms are a serious issue in fresh, brackish, and marine water, as they decrease light penetration through the water and deplete dissolved oxygen, causing mortality for aquatic life [2]. Cyanobacteria are oxygenic autotrophs, constituting the largest and most diverse community of photosynthetic prokaryotes [3]. They play imperative roles in carbon and nutrient cycling in aquatic systems, as well as in degrading water quality and safety, causing numerous problems with water sources and ecosystem management [4]. From an environmental perspective, cyanobacterial blooms and their effects have been reported in the scientific literature for more than a century, and their probability and severity have both escalated over time [5]. The mass development of cyanobacteria has resulted in various negative consequences including eutrophication, ecosystem imbalances, and scenic impairments [6]. Their ability to produce toxic secondary metabolites is becoming an increasingly important environmental issue, which is threatening human, animal, and plant health. Cyanobacterial blooms can, thereby, lead to ecosystem destruction [7,8]. Given these problems, gaps in our knowledge of cyanobacteria must be filled.
It is important to understand the environmental factors associated with cyanobacterial growth and metabolism to address real world problems. This subject has been extensively mentioned in connection to climate change [9,10], and anthropogenic activities associated with land use changes are also being experienced worldwide and have been widely discussed in the literature [11,12]. Cyanobacteria have several environmental drivers, such as water temperature, water column irradiance, and stratification of the water column coupled with long residence time, the availability of nitrogen (N) and phosphorus (P), and the turbidity and salinity of water. Of these drivers, light intensity is a particularly important determinant of the growth of cyanobacterial blooms [13]. The growth patterns of cyanobacteria respond to different light intensities via morphological and physiological changes [14], and detailed investigation of these changes is vital for the formulation of both proactive and reactive planning for freshwater resources management.
Pseudanabaena galeata and Microcystis aeruginosa are two cyanobacteria species that are known to degrade water quality and safety in many parts of the world [15]. P. galeata is a non-bloom-forming species, however, it forms odorous 2-methylisoborneol (2-MIB) which causes operational issues with water supplies [16]. M. aeruginosa is a bloom forming species that synthesizes secondary toxic metabolites, namely microcystins, which affect water safety, and therefore human health, thereby posing serious social and ecological hazards [17,18]. In addition to these concerns that arise with both species, their worldwide occurrences have increased as eutrophication and global warming which together have provided suitable conditions for vigorous growth [19,20].
As the frequency of cyanobacteria blooms continues to increase, various control measures are being applied to control their growth [21]. Methods such as the mixing of water in lakes or reservoirs mainly focus on exposing cyanobacteria to low levels of light. However, the photosynthetic organisms of cyanobacteria can also be stressed by high-light exposure, and the excess energy produces reactive oxygen species (ROS), which cause severe photodamage to their cellular components [22,23]. The growth rates of Microcystis and Anabaena species are high under low-light levels (25 μmol m−2 s−1), however, these growth rates decrease under high-light levels (200 μmol m−2 s−1) [22,24].
Although high-light levels can negatively affect cyanobacteria species, the responses and relationships of their oxidative stress, antioxidant, pigmentation, and protein contents are currently not well understood. Therefore, in this study, we aimed to explore the responses of P. galeata and M. aeruginosa to low-light and high-light stressors. We measured hydrogen peroxide (H2O2), antioxidant enzymes (catalase (CAT) and peroxidase (POD)), chlorophyll a (Chl-a), protein contents, and optical densities (OD730) under different light conditions. The growth performances of these two species were calculated and validated using cyanobacteria growth models proposed by Steele [25], Platt and Jassby [26], and Peeters and Eilers [27], to determine the applicability of our findings to cyanobacteria control.

2. Materials and Methods

2.1. Cyanobacterial Cultures and Incubation

Strains of the cyanobacterial species P. galeata and M. aeruginosa were obtained from the National Institute for Environmental Studies (NIES) at Ibaraki, Japan. The samples were cultured in BG-11 medium [28] and acclimatized for 14 days inside an incubator (MIR-254, Sanyo, Tokyo, Japan) at 20 °C; they underwent manual shaking three to five times per day. The samples were cultured under controlled light conditions, with photon flux levels of 20 to 30 μmol m−2 s−1 emitted from cool white fluorescent lamps (5000 K color temperature). The cycle of light conditions to dark conditions was maintained at 12 h light and 12 h dark [29], using an automatic setup time device (REVEX PT7, Saitama, Japan).

2.2. Growth Experimental Setup

All of the experiments were conducted inside an incubator (MIR-254, Sanyo, Tokyo, Japan) at a constant temperature of 20 °C throughout the experimental period. To characterize the growth response to different light conditions, incubated P. galeata (NIES 512) and M. aeruginosa (NIES 111) cells were separately subjected to seven different photon flux levels (0, 10, 30, 50, 100, 300, and 600 μmol m−2 s−1); a constant temperature of 20 °C was used to calculate the saturation light intensities. Light was supplied from cold white fluorescent lamp sources. The cultures were maintained in an illumination cycle of 12 h light and 12 h dark (12L:12D). Zero μmol m−2 s−1 light intensity means that there was no light source; these cultures were maintained in 24 h of darkness. The light intensities were measured using a quantum sensor (ml-020P, EKO Instruments Co., Ltd., Tokyo, Japan), and were read as voltage output (mV) by a voltage logger (LR5041, HIOKI, Nagano, Japan). The cells that were cultured under different light levels were sampled for Chl-a and enzyme analysis in two-day intervals. To ensure the homogenous exposure of cells to the light environment, the cyanobacteria cultured flasks were shaken gently five times a day. Each treatment was performed in triplicate.

2.3. Measuring Protein

The concentration of protein was measured using the Bradford method [30]. A crude protein extract was discolored with Coomassie (G-250). After incubation at room temperature (25 ± 2 °C) for 10 min, the absorbance was measured at 595 nm using an ultraviolet visible (UV-Vis) spectrometer (UVmini-1240, Shimadzu, Kyoto, Japan). Protein was diluted with the same buffer and was stained with Coomassie (G-250) dye and used to prepare the standard curve; deionized water was used as the blank.

2.4. Measuring OD730

To estimate the growth of cyanobacteria, the OD730 was measured by taking 1 mL of sample from each flask. The OD730 was measured with a UV-Vis spectrophotometer (UVmini-1240, Shimadzu, Kyoto, Japan) at an optical absorption wavelength of 730 nm, using a previously proposed methodology [31,32].

2.5. Measuring Chlorophyll a Content

The concentration of Chl-a in the cyanobacteria samples was measured according to the method described by Holm and Romo [33,34]. The 1 mL cell suspensions of the two species were centrifuged separately at 10,000× g for 10 min at 4 °C, and the supernatant was removed. Each cell pellet was washed once with Milli-Q water and then extracted in 1 mL of 80% acetone. The mixture was shaken vigorously and maintained in darkness overnight at room temperature (25 ± 2 °C). Then, each sample was again centrifuged at 10,000× g, and the supernatant was measured with a UV-Vis spectrophotometer (UVmini-1240, Shimadzu, Kyoto, Japan) at absorption wavelengths of 660 and 645 nm. To correct for the absorbance for pheophytin a, the samples were acidified with 0.1 N HCL, and their absorbance was measured again. The chlorophyll a content was calculated by using Equation (1) [33]:
C h l a = ( 9.76 × A 660 ) ( 0.99 × A 645 )
where   C h l a is the content of chlorophyll a (expressed in µg per mL), and   A 660 and   A 645 are the absorbance values 660 nm and 645 nm, respectively.

2.6. Measuring H2O2 Content

The method specified by Jana [35] was employed to measure the H2O2 concentration in the cultured cyanobacteria samples. The P. galeata (NIES 512) and M. aeruginosa (NIES 111) cell pellets were obtained by centrifuging at 10,000× g for 10 min and removing the supernatant. The cell pellets were washed once with Milli-Q water and homogenized in 1 mL of 0.1 M pH 6.5 phosphate buffer to extract the internal H2O2. The homogenate was then centrifuged at 10,000× g for 10 min at 4 °C and the extract was used for H2O2 estimation. A reaction mixture of 0.1% titanium chloride in 20% H2SO4 (v/v) was added to the supernatant, and after a 1 min incubation period, the mixture was centrifuged at room temperature (25 ± 2 °C) and the absorbance was measured at 410 nm with a UV-Vis spectrophotometer (UVmini-1240, Shimadzu, Kyoto, Japan). The H2O2 concentration was determined using the pre-prepared standard curve for known concentration series. An extinction coefficient of 0.28 mmol−1 cm−1 was used to calculate the concentration of H2O2 in µmol mL−1.

2.7. Measuring CAT Activity

The CAT activity was measured using the method proposed by Aebi [36]. The cyanobacteria cells were homogenized in a phosphate buffer (pH 7.0), supernatant liquid was, then, taken as an enzyme extract, after being centrifuged at 12,000× g at 4 °C for 10 min. The decrease in absorbance at 240 nm was recorded for 3 min. The CAT activity was calculated using an extinction coefficient of 39.4 mM−1 cm−1.

2.8. Measuring POD Activity

The POD activity was measured based on guaiacol oxidation, as proposed by MacAdam [37]. The reaction mixture contained 920 µL of 100 mM potassium phosphate buffer (pH 6.8), 15 µL of 0.6% H2O2, and 65 µL of enzyme extract. The increase in absorbance was measured at 420 nm every 10 s for 3 min.

2.9. Cell Growth Measurement and Different Model Fitting

The cell growth of cyanobacteria was measured using OD730 measurements. OD730 was measured using a UV-Vis spectrophotometer (UVmini-1240, Shimadzu, Kyoto, Japan).
The cell growth measurements were compared with three cell growth models that have been proposed for cyanobacteria growth [25,26,27]. The cell growth of cyanobacteria was measured using OD730 measurements, which were applied to the growth rate in Equation (2) [38]. Then, the calculated growth rates were compared with the three model outputs obtained for the different light intensities of the present experiment.
μ = ( l o g O D t l o g O D 0 ) t × 3.32
where   μ is the cell growth rate, t is the time in days, O D t is the optical density after t days, and O D t is the optical density at the beginning of the experiment zero time. Different models proposed by Steele [25], Platt and Jassby [26], and Peeters and Eilers [27] were fitted to our experimental observations [39].
The model proposed by Steele [25], named Model I, is written as:
μ T , I = μ m a x T × I / I o p t T × exp ( I I / I o p t T )
where μ T , I is the growth rate at light intensity I, and μ m a x T and I o p t T are the estimated maximal growth rates and the optimal light intensity at temperature T, respectively.
The model proposed by Platt and Jassby [26], named Model II, is written as:
μ T , I = μ m a x T × tan h [ α × ( I I c ) / μ m a x T ]
where α is the growth efficacy, Ic is the estimated light intensity without growth (Ic ≥ 0), and tanh is the hyperbolic tangential function.
The model proposed by Peeters and Eilers [27], named Model III, is written as:
μ T , I = 2 × μ m a x T × ( 1 + β ) × ( I / I o p t T ) / [ ( I / I o p t T ) 2 + 2 × ( I / I o p t T ) × β + 1 ]
where β is the attenuation coefficient, which allows for consideration of the photoinhibition phenomenon.

2.10. Statistical Analysis

All the presented results are expressed as the mean ± SD (n = 3). A two-way analysis of variance (ANOVA) followed by Tukey’s post-hoc tests were performed to examine the statistical significance of variations among the means between the light exposure period and light intensity combinations used for P. galeata and M. aeruginosa. Statistical analyses were performed by using IBM SPSS Statistics for Windows, Version 25.0. (Armonk, NY, USA: IBM Corp).

3. Results

The protein concentrations of P. galeata and M. aeruginosa species after two- and eight-day periods of exposure to light of different intensities are presented in Figure 1a,b. After the two-day period of exposure, the protein concentrations of each exposure condition were nearly the same as the initial values, 61.6 ± 3.0 µg mL−1 for P. galeata (F6,14 = 1.250 and p = 0.34) and 54.5 ± 0.70 µg mL−1 for M. aeruginosa (F6,14 = 3.960 and p = 0.016). However, for P. galeata (F6,14 = 32.795 and p < 0.0001) the concentration substantially increased after eight days. It increased rapidly up to 100 μmol m−2 s−1, and then continued to increase at a slower rate up to 600 μmol m−2 s−1. For M. aeruginosa (F6,14 = 34.824 and p < 0.0001), the protein concentration exhibited a decreasing trend with respect to increasing light intensity, which is an almost opposite trend to that of P. galeata. The protein concentration of M. aeruginosa decreased rapidly up to a light intensity of 100 μmol m−2 s−1 and, then, continued to decrease at a slower rate up to 600 μmol m−2 s−1.
The variations in OD730 with respect to light intensity are presented in Figure 2a,b. P. galeata and M. aeruginosa both showed a statistically significant difference between the two- and eight-day periods of exposure (P. galeata F6,28 = 188.811, p < 0.0001 and M. aeruginosa F6,28 = 145.041, p < 0.0001). After two days, relatively constant OD730 values were observed under all of the light intensities, for both P. galeata and M. aeruginosa. The eight-day OD730 value of P. galeata increased under 30 and 50 μmol m−2 s−1 light intensities and, then, decreased under higher light intensities over the two-day period. However, the OD730 values of M. aeruginosa after eight days were approximately double the OD730 values of P. galeata.
The Chl-a concentrations of P. galeata and M. aeruginosa under different light intensities are presented in Figure 3a,b. The Chl-a concentrations of P. galeata and M. aeruginosa showed a statistically higher significant difference after eight than after two days (P. galeata F6,28 = 21.876, p < 0.0001 and M. aeruginosa F6,28 = 9.036, p = 0.0001). After the two-day exposure, the Chl-a concentrations of both species showed a slightly decreasing trend after 50 μmol m−2 s−1. After eight days, the Chl-a concentration increased under 30 and 50 μmol m−2 s−1 for P. galeata, however, it decreased more under the high-light intensity than that after the two-day exposure. After eight days, the Chl-a content of M. aeruginosa also followed the same trend as P. galeata, but with different values. Chl-a gradually increased up to 50 μmol m−2 s−1 light intensity, and then started to degrade under higher light intensities.
The ratio of H2O2 per protein (H2O2/protein) over different light intensities is shown in Figure 4a,b. After two days, P. galeata’s H2O2/protein decreased under 30 and 50 μmol m−2 s−1, increased gradually up to 300 μmol m−2 s−1, and then remained level under 600 μmol m−2 s−1. After eight days, the H2O2/protein was steady up to 100 μmol m−2 s−1 and, then, followed a decreasing trend under 300 and 600 μmol m−2 s−1. The H2O2/protein of M. aeruginosa showed an increasing trend up to 100 μmol m−2 s−1 under both two and eight days of exposure. Then, under 300 and 600 μmol m−2 s−1, we observed a slightly increasing trend for the two-day exposure and a decreasing trend for the eight-day exposure. Both P. galeata and M. aeruginosa showed a statistically significant difference in H2O2/protein after eight days as compared with after two days (P. galeata F6,28 = 9.036, p < 0.0001 and M. aeruginosa: F6,28 = 10.864, p < 0.0001).
The relationship between Chl-a content and H2O2 is shown in Figure 5a,b. We found a clear negative correlation between Chl-a content and H2O2 for P. galeata (correlation coefficient, r = 0.94) and M. aeruginosa (r = 0.71) after the two-day period only. The Chl-a content and H2O2 results were scattered beyond the two-day period. Both species P. galeata (F6,28 = 40.569 and p < 0.0001) and M. aeruginosa (F6,28 = 16.026 and p < 0.0001) showed statistically significant differences.
Figure 6a,b depicts the H2O2 per OD730 (H2O2/OD730) variation with respect to light intensity for both species after two and eight days. After two days, P. galeata H2O2/OD730 remained the same across the light intensities. However, for M. aeruginosa, H2O2/OD730 decreased for 10 and 30 μmol m−2 s−1, and then increased with further increasing light intensities. After eight days, P. galeata H2O2/OD730 increased more significantly than after two days of exposure, except for under 30 μmol m−2 s−1 (F6,28 = 69.894, p < 0.0001). For M. aeruginosa, H2O2/OD730 decreased significantly from a light intensity of 30 μmol m−2 s−1 (F6,28 = 13.964, p < 0.0001). We identified a clearer positive correlation between H2O2/OD730 and light intensity for P. galeata after two days of exposure (r = 0.74) and after eight-day exposure (r = 0.88), as well as for M. aeruginosa after two (r = 0.91) and eight (r = 0.54) days of exposure.
The CAT activity of two cyanobacteria species were found to be a function of H2O2/protein, as shown in Figure 7a,b. P. galeata showed a statistically significant difference (F6,28 = 2.870, p = 0.026), as did M. aeruginosa (F6,28 = 2.881, p = 0.026). The CAT activity was highest for the two-day period for the highest H2O2/protein values; after that, its value decreased with decreasing H2O2/protein for P. galeata. In contrast, H2O2/protein increased with time for M. aeruginosa, therefore, a higher CAT activity was generated.
The POD activity of the two cyanobacteria species was also found to be a function of H2O2/protein, as shown in Figure 8a,b. P. galeata showed a statistically significant difference (F6,28 = 16.452, p < 0.0001), as did M. aeruginosa (F6,28 = 3.640, p = 0.009). In P. galeata, POD activity after two days was higher than that in the eight-day experiment. In contrast, in M. aeruginosa, the POD activity increased with increasing H2O2/protein during both experiments.
The trend was also observed in the color of the sample, which changed after both periods under different light intensities, as shown in Figure 9.
The observed growth rates were fitted to the models proposed by Steele (Model I) [25], Platt and Jassby (Model II) [26], and Peeters and Eilers (Model III) [27]. The observed two-day growth rate of P. galeata fitted Model II, and the eight-day growth rate fitted Model I (Figure 10). The observed two- and eight-day data of M. aeruginosa fitted Model III, and the eight-day data fitted model III. P. galeata attained a maximum growth rate of 0.13 day−1 within the first two days under a light intensity of 100 μmol m−2 s−1, whereas M. aeruginosa attained a maximum growth rate of 0.15 day−1 within the first two days under a light intensity of 30 μmol m−2 s−1 (Figure 11). The mean growth rates of P. galeata and M. aeruginosa were 0.08 day−1 and 0.12 day−1, respectively, achieved under a light intensity of 30 μmol m−2 s−1.

4. Discussion

Two cyanobacteria species, P. galeata and M. aeruginosa, exhibited different responses under different light intensities, and with respect to increasing light conditions, particularly when exceeding 50 μmol m−2 s−1. P. galeata was negatively affected when the light intensity exceeded 100 μmol m−2 s−1, and M. aeruginosa was also negatively affected. However, under two days of exposure, neither species was influenced, even by the extreme light conditions (300 and 600 μmol m−2 s−1), suggesting that under a short exposure to high-light intensity, both species would survive. However, the extended exposure (eight days) increased the stress on both species. Therefore, both species have the capacity to tolerate light stress for shorter durations but lose this tolerance after extended exposure periods. Light intensities between 30 to 50 μmol m−2 s−1 can be considered preferable light conditions for P. galeata growth; with a corresponding range of 10 to 100 µmol m−2 s−1 for M. aeruginosa (Figure 11). These findings show similar trends to previously published results, as the growth of Microcystis and Anabaena species increased under low light (25 μmol m−2 s−1) but decreased under high light (200 μmol m−2 s−1) [22,24,34]. However, we confirmed that light intensities exceeding 200 μmol m−2 s−1 further intensified stress on both cyanobacteria species. As the only parameter that was varied in the present experiment was light, this suggests that cells become stressed mainly due to photosystem-produced H2O2, even at light intensities under 600 μmol m−2 s−1, as in most cyanobacteria species, photoinhibition occurred when the light intensity exceeded 1000 μmol m−2 s−1 [40,41,42].
The reduced protein content, which reflects increased stress or vice versa for M. aeruginosa and most cyanobacteria species [43], decreased more after the eight-day period than the two-day period, independent from the light intensity. This reveals that M. aeruginosa has a defense mechanism to prevent cell damage from light (Figure 1a,b). The observed decreases in protein content with increasing light intensity in M. aeruginosa are a result of decreased phycobiliprotein synthesis, which protects against the absorption of excess light energy and the increased degradation of protein by proteases [44,45,46]. The increased OD730 of M. aeruginosa, except at 0 and 600 μmol m−2 s−1 (two- and eight-day differences in M. aeruginosa OD730 under 600 μmol m−2 s−1 minimum as compared with P. galeata), evidences the survival and continuous cell proliferation of M. aeruginosa. P. galeata, which appeared to be relatively weak, strictly preferred 30 and 50 μmol m−2 s−1, and experienced high stress under lower or higher light intensities, considering the Chl-a content and OD730. However, the observed increases in protein content with increasing light stress suggest that there was a deviated stress response for P. galeata. The increased protein content can be associated with the upregulation of stress-related protein, as the oxidative stress was enforced due to the elevated H2O2 content with increasing light intensity [47]. However, further research focused on the upregulation of stress proteins is necessary to confirm this phenomenon.
The oxidative stress response mechanism, in cyanobacteria, helps to protect from extreme environmental conditions and can trigger antioxidant defense system responses [48]. The balance between the oxidative stress and antioxidative enzymes is disturbed by abiotic stress factors, and cells are subjected to oxidative stress in these conditions [49,50]. In this study, the H2O2 concentrations of both species were enhanced under low light (0 and 10 μmol m−2 s−1) and high light (100 to 600 μmol m−2 s−1) intensities. After two days, the CAT and POD activities of P. galeata showed scattered trends with respect to oxidative stress (Figure 7), whereas for M. aeruginosa, they showed increasing trends (Figure 8). However, when testing the regression relationships between H2O2/protein and antioxidant enzymes, CAT activity was found to have a strong relationship as compared with the POD of both species (CAT: M. aeruginosa r = 0.89 and P. galeata r = 0.90; POD: M. aeruginosa r = 0.75 and P. galeata r = 0.45). This confirms that the CAT activity of both cyanobacteria species played a more prominent antioxidant activity role than POD. Under higher stress, the antioxidant balance was also lost.
These findings show that high levels of light exposure can be adopted as a non-chemical method to control P. galeata and M. aeruginosa. This approach differs from methods such as the artificial mixing of water in lakes and reservoirs, which are based on the hypothesis that low-light exposure suppresses cyanobacteria growth [21]. However, we suggest that, in the case of controlling of P. galeata and M. aeruginosa, both low- and high-light exposure can be used effectively. Practical methods should be further studied to determine the field implications of high-light exposure for controlling these species. Particular focus should be given to methods that would keep the water column illuminated, thereby exceeding the light levels tolerable for P. galeata and M. aeruginosa. The growth performance of these two cyanobacteria species was fitted with one or more mathematical models tested (Figure 10), which confirmed the fit of the present data for the evaluation of growth responses of P. galeata and M. aeruginosa under low- and high-light conditions.

5. Conclusions

The availability of 30 to 50 µmol m−2 s−1 light was found to be a favorable illumination range for P. galeata, with the corresponding range for M. aeruginosa being 10 to 100 µmol m−2 s−1. Beyond the optimal light intensities, the growth of the two cyanobacteria species was reduced. M. aeruginosa demonstrated higher tolerance to higher light intensities than P. galeata. High-light intensities, at which growth was lowest, could be used to develop control mechanisms, or to improve the present methods based on low-light exposure. This could help to effectively control cyanobacteria in water bodies. The fitting of the present results with the cyanobacteria growth models confirms that the growth responses of P. galeata and M. aeruginosa to different light conditions can be modeled to predict and control their occurrence.

Author Contributions

For conceptualization and methodology, G.M. and T.A.; software, validation, formal analysis, and writing—original draft preparation, G.M.; writing—review and editing, G.M., T.A., S.M.D.H.J., M.B.B., and M.H.R.; supervision, T.A.; data curation, G.M, M.B., H.D.L.A., and H.Y.; funding Acquisition, T.A. and S.J. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Japan Society for the Promotion of Science (JSPS), JSPS KAKENHI grant numbers 19H02245 and 18K13833.

Acknowledgments

We would like to give special thanks to Saitama University for providing laboratory and also give thanks to Kyoko Endo for administrative role during purchasing chemicals, materials and tools for this research study.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Trolle, D.; Nielsen, A.; Rolighed, J.; Thodsen, H.; Andersen, H.; Karlsson, I.; Refsgaard, J.C.; Olesen, J.; Bolding, K.; Kronvang, B.; et al. Projecting the future ecological state of lakes in Denmark in a 6 degree warming scenario. Clim. Res. 2015, 64, 55–72. [Google Scholar] [CrossRef] [Green Version]
  2. Wang, B.; Wang, X.; Hu, Y.; Chang, M.; Bi, Y.; Hu, Z. The combined effects of UV-C radiation and H2O2 on Microcystis aeruginosa, a bloom-forming cyanobacterium. Chemosphere 2015, 141, 34–43. [Google Scholar] [CrossRef]
  3. Demoulin, C.F.; Lara, Y.J.; Cornet, L.; François, C.; Baurain, D.; Wilmotte, A.; Javaux, E.J. Cyanobacteria evolution: Insight from the fossil record. Free. Radic. Boil. Med. 2019, 140, 206–223. [Google Scholar] [CrossRef]
  4. Yan, D.; Xu, H.; Yang, M.; Lan, J.; Hou, W.; Wang, F.; Zhang, J.; Zhou, K.; An, Z.; Goldsmith, Y. Responses of cyanobacteria to climate and human activities at Lake Chenghai over the past 100 years. Ecol. Indic. 2019, 104, 755–763. [Google Scholar] [CrossRef]
  5. Śliwińska-Wilczewska, S.; Cieszyńska, A.; Konik, M.; Maculewicz, J.; Latała, A. Environmental drivers of bloom-forming cyanobacteria in the Baltic Sea: Effects of salinity, temperature, and irradiance. Estuarine, Coast. Shelf Sci. 2019, 219, 139–150. [Google Scholar] [CrossRef]
  6. Mazur-Marzec, H.; Sutryk, K.; Kobos, J.; Hebel, A.; Hohlfeld, N.; Błaszczyk, A.; Toruńska, A.; Kaczkowska, M.J.; Łysiak-Pastuszak, E.; Kraśniewski, W. Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia 2013, 701, 235–252. [Google Scholar] [CrossRef] [Green Version]
  7. Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2005, 203, 264–272. [Google Scholar] [CrossRef]
  8. Pearson, L.; Mihali, T.; Moffitt, M.; Kellmann, R.; Neilan, B. On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin. Mar. Drugs 2010, 8, 1650–1680. [Google Scholar] [CrossRef] [Green Version]
  9. Paerl, H.W.; Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
  10. O’Neil, J.; Davis, T.; Burford, M.; Gobler, C. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
  11. Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Genet. 2018, 16, 471–483. [Google Scholar] [CrossRef]
  12. Barros, M.U.; Wilson, A.E.; Leitão, J.I.; Pereira, S.P.; Buley, R.P.; Fernandez-Figueroa, E.G.; Capelo-Neto, J. Environmental factors associated with toxic cyanobacterial blooms across 20 drinking water reservoirs in a semi-arid region of Brazil. Harmful Algae 2019, 86, 128–137. [Google Scholar] [CrossRef] [PubMed]
  13. Berg, M.; Sutula, M. Factors affecting the growth of cyanobacteria with special emphasis on the Sacramento-San Joaquin Delta. South. Calif. Coast. Water Res. Proj. Tech. Rep. 2015, 869, 7–28. [Google Scholar]
  14. Khatoon, H.; Leong, L.K.; Rahman, N.A.; Mian, S.; Begum, H.; Banerjee, S.; Endut, A. Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresour. Technol. 2018, 249, 652–658. [Google Scholar] [CrossRef] [PubMed]
  15. Abeynayaka, H.D.L.; Asaeda, T.; Rashid, M.H. Effects of elevated pressure on Pseudanabaena galeata Böcher in varying light and dark environments. Environ. Sci. Pollut. Res. 2018, 25, 21224–21232. [Google Scholar] [CrossRef] [PubMed]
  16. Kakimoto, M.; Ishikawa, T.; Miyagi, A.; Saito, K.; Miyazaki, M.; Asaeda, T.; Yamaguchi, M.; Uchimiya, H.; Kawai-Yamada, M. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata. J. Plant Physiol. 2014, 171, 292–300. [Google Scholar] [CrossRef] [PubMed]
  17. Dang, T.C.; Fujii, M.; Rose, A.L.; Bligh, M.; Waite, T.D. Characteristics of the freshwater cyanobacterium Microcystis aeruginosa grown in iron-limited continuous culture. Appl. Environ. Microbiol. 2012, 78, 1574–1583. [Google Scholar] [CrossRef] [Green Version]
  18. Princiotta, S.D.; Hendricks, S.P.; White, D.S. Production of Cyanotoxins by Microcystis aeruginosa Mediates Interactions with the Mixotrophic Flagellate Cryptomonas. Toxins 2019, 11, 223. [Google Scholar] [CrossRef] [Green Version]
  19. Glibert, P.M. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 2019, 101583. [Google Scholar] [CrossRef]
  20. Lürling, M.; Van Oosterhout, F.; Faassen, E. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins. Toxins 2017, 9, 64. [Google Scholar] [CrossRef] [Green Version]
  21. Visser, P.M.; Ibelings, B.W.; Bormans, M.; Huisman, J. Artificial mixing to control cyanobacterial blooms: A review. Aquat. Ecol. 2016, 50, 423–441. [Google Scholar] [CrossRef] [Green Version]
  22. Islam, M.A.; Beardall, J. Growth and Photosynthetic Characteristics of Toxic and Non-Toxic Strains of the Cyanobacteria Microcystis aeruginosa and Anabaena circinalis in Relation to Light. Microorganisms 2017, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Muramatsu, M.; Hihara, Y. Acclimation to high-light conditions in cyanobacteria: From gene expression to physiological responses. J. Plant Res. 2012, 125, 11–39. [Google Scholar] [CrossRef] [PubMed]
  24. Venugopal, V.; Prasanna, R.; Sood, A.; Jaiswal, P.; Kaushik, B.D. Stimulation of pigment accumulation in Anabaena azollae strains: Effect of light intensity and sugars. Folia Microbiol. 2006, 51, 50–56. [Google Scholar] [CrossRef] [PubMed]
  25. Steele, J.H. Notes on some theoketical pkoblems in pkoduction ecology. Prim. Product. Aquat. Environ. 1965, 18, 383. [Google Scholar]
  26. Platt, T.; Jassby, A.D. The relationship between photosynthesis and light for natural assemblages of coastal marine phyoplankton. J. Phycol. 1976, 12, 421–430. [Google Scholar]
  27. Peeters, J.C.H.; Eilers, P. The relationship between light intensity and photosynthesis—A simple mathematical model. Aquat. Ecol. 1978, 12, 134–136. [Google Scholar] [CrossRef]
  28. Rippka, R.; Stanier, R.Y.; Deruelles, J.; Herdman, M.; Waterbury, J.B. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef] [Green Version]
  29. Guan, Y.; Deng, M.; Yu, X.; Zhang, W. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Eng. J. 2004, 19, 69–73. [Google Scholar] [CrossRef]
  30. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
  31. Axler, R.P.; Owen, C.J. Measuring chlorophyll and phaeophytin: Whom should you believe? Lake Reserv. Manag. 1994, 8, 143–151. [Google Scholar] [CrossRef]
  32. Association, A.P.H.; Association, A.W.W.; Federation, W.P.C.; Federation, W.E. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1915; ISBN 8755-3546. [Google Scholar]
  33. Holm, G. Chlorophyll Mutations in Barley. Acta Agric. Scand. 1954, 4, 457–471. [Google Scholar] [CrossRef]
  34. Romo, S. Growth parameters of Pseudanabaena galeata Böcher in culture under different light and temperature conditions. Algol. Stud. für Hydrobiol. Suppl. 1994, 75, 239–248. [Google Scholar]
  35. Jana, S.; Choudhuri, M.A. Effects of plant growth regulators on Hill activity of submerged aquatic plants during induced senescence. Aquat. Bot. 1984, 18, 371–376. [Google Scholar] [CrossRef]
  36. Aebi, H. Catalase in vitro. In Tumor Immunology and Immunotherapy &ndash; Cellular Methods Part B; Elsevier: Amsterdam, The Netherlands, 1984; pp. 121–126. [Google Scholar]
  37. Macadam, J.W.; Nelson, C.J.; Sharp, R.E. Peroxidase Activity in the Leaf Elongation Zone of Tall Fescue: I. Spatial Distribution of Ionically Bound Peroxidase Activity in Genotypes Differing in Length of the Elongation Zone. Plant Physiol. 1992, 99, 872–878. [Google Scholar] [CrossRef] [Green Version]
  38. Foy, R.H.; Gibson, C.E.; Smith, R. V The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Br. Phycol. J. 1976, 11, 151–163. [Google Scholar] [CrossRef]
  39. Sabour, B.; Sbiyyaa, B.; Loudiki, M.; Oudra, B.; Belkoura, M.; Vasconcelos, V. Effect of light and temperature on the population dynamics of two toxic bloom forming Cyanobacteria–Microcystis ichthyoblabe and Anabaena aphanizomenoides. Chem. Ecol. 2009, 25, 277–284. [Google Scholar] [CrossRef]
  40. Whitelam, G.C.; Cold, G.A. Photoinhibition of photosynthesis in the cyanobacterium Microcystis aeruginosa. Planta 1983, 157, 561–566. [Google Scholar] [CrossRef]
  41. Machová, K.; Elster, J.; Adamec, L. Xanthophyceaen assemblages during winter-spring flood: Autecology and ecophysiology of Tribonema fonticolum and T. monochloron. Hydrobiologia 2008, 600, 155–168. [Google Scholar] [CrossRef]
  42. Harel, Y.; Ohad, I.; Kaplan, A. Activation of Photosynthesis and Resistance to Photoinhibition in Cyanobacteria within Biological Desert Crust1[w]. Plant Physiol. 2004, 136, 3070–3079. [Google Scholar] [CrossRef] [Green Version]
  43. Kaebernick, M.; Neilan, B.A.; Börner, T.; Dittmann, E. Light and the Transcriptional Response of the Microcystin Biosynthesis Gene Cluster. Appl. Environ. Microbiol. 2000, 66, 3387–3392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. De Oliveira, C.A.; Oliveira, W.C.; Ribeiro, S.M.R.; Stringheta, P.C.; Nascimento, A.G. Effect of light intensity on the production of pigments in Nostoc SPP. Eur. J. Biol. Med. Sci. Res. 2014, 2, 23–36. [Google Scholar]
  45. Pojidaeva, E.; Zinchenko, V.; Shestakov, S.V.; Sokolenko, A. Involvement of the SppA1 Peptidase in Acclimation to Saturating Light Intensities in Synechocystis sp. Strain PCC 6803. J. Bacteriol. 2004, 186, 3991–3999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Rosales-Loaiza, N.; Guevara, M.; Lodeiros, C.; Morales, E. Crecimiento y producción de metabolitos de la cianobacteria marina Synechococcus sp.(Chroococcales) en función de la irradiancia. Rev. Biol. Trop. 2008, 56, 421–429. [Google Scholar] [CrossRef]
  47. Babele, P.K.; Kumar, J.; Chaturvedi, V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front. Microbiol. 2019, 10, 1315. [Google Scholar] [CrossRef] [Green Version]
  48. Liu, M.; Shi, X.; Chen, C.; Yu, L.; Sun, C. Responses of Microcystis Colonies of Different Sizes to Hydrogen Peroxide Stress. Toxins 2017, 9, 306. [Google Scholar] [CrossRef] [Green Version]
  49. De Silva, H.C.C.; Asaeda, T. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J. Plant Interactions 2017, 12, 228–236. [Google Scholar] [CrossRef] [Green Version]
  50. Rastogi, R.P.; Singh, S.P.; Häder, D.-P.; Sinha, R.P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397, 603–607. [Google Scholar] [CrossRef]
Figure 1. Changes in protein concentration with respect to light intensity after two and eight days for two species. (a) Pseudanabaena galeata; (b) Microcystis aeruginosa.
Figure 1. Changes in protein concentration with respect to light intensity after two and eight days for two species. (a) Pseudanabaena galeata; (b) Microcystis aeruginosa.
Water 12 00407 g001
Figure 2. Changes in OD730 with respect to light intensity after two and eight days. (a) P. galeata; (b) M. aeruginosa.
Figure 2. Changes in OD730 with respect to light intensity after two and eight days. (a) P. galeata; (b) M. aeruginosa.
Water 12 00407 g002
Figure 3. Changes in chlorophyll a (Chl-a) content with respect to culture light intensity. (a) P. galeata; (b) M. aeruginosa under different light intensities (0 to 600 µmol photons m−2 s−1) after two and eight days.
Figure 3. Changes in chlorophyll a (Chl-a) content with respect to culture light intensity. (a) P. galeata; (b) M. aeruginosa under different light intensities (0 to 600 µmol photons m−2 s−1) after two and eight days.
Water 12 00407 g003
Figure 4. Changes in H2O2/protein with respect to culture light intensity. (a) P. galeata; (b) M. aeruginosa, after two and eight days.
Figure 4. Changes in H2O2/protein with respect to culture light intensity. (a) P. galeata; (b) M. aeruginosa, after two and eight days.
Water 12 00407 g004
Figure 5. Chl-a content and H2O2. (a) P. galeata; (b) M. aeruginosa, after two and eight days.
Figure 5. Chl-a content and H2O2. (a) P. galeata; (b) M. aeruginosa, after two and eight days.
Water 12 00407 g005
Figure 6. H2O2/OD730 with respect to culture light intensity. (a) P. galeata; (b) M. aeruginosa, under different light intensities (0 to 600 µmol m−2 s−1) after two and eight days.
Figure 6. H2O2/OD730 with respect to culture light intensity. (a) P. galeata; (b) M. aeruginosa, under different light intensities (0 to 600 µmol m−2 s−1) after two and eight days.
Water 12 00407 g006
Figure 7. Catalase (CAT) activity with respect to H2O2/protein. (a) P. galeata; (b) M. aeruginosa, under different light intensities (0 to 600 µmol photons m−2 s−1) after two and eight days.
Figure 7. Catalase (CAT) activity with respect to H2O2/protein. (a) P. galeata; (b) M. aeruginosa, under different light intensities (0 to 600 µmol photons m−2 s−1) after two and eight days.
Water 12 00407 g007
Figure 8. Peroxidase (POD) activity in relation to H2O2/protein. (a) P. Galeata; (b) M. aeruginosa, under different light intensities (0 to 600 µmol m−2 s−1) after two and eight days.
Figure 8. Peroxidase (POD) activity in relation to H2O2/protein. (a) P. Galeata; (b) M. aeruginosa, under different light intensities (0 to 600 µmol m−2 s−1) after two and eight days.
Water 12 00407 g008
Figure 9. Photographs showing growth during the two- and eight-day periods. (a) P. galeata; (b) M. aeruginosa, under different light intensities (0 to 600 µmol m−2 s−1).
Figure 9. Photographs showing growth during the two- and eight-day periods. (a) P. galeata; (b) M. aeruginosa, under different light intensities (0 to 600 µmol m−2 s−1).
Water 12 00407 g009
Figure 10. Growth rates of P. galeata and M. aeruginosa as a function of light intensity at different time intervals. (a) Two days; (b) eight days. The observed data were fitted with the models proposed by Steele (Model I) [25], Platt and Jassby (Model II) [26], and Peeters and Eilers (Model III) [27].
Figure 10. Growth rates of P. galeata and M. aeruginosa as a function of light intensity at different time intervals. (a) Two days; (b) eight days. The observed data were fitted with the models proposed by Steele (Model I) [25], Platt and Jassby (Model II) [26], and Peeters and Eilers (Model III) [27].
Water 12 00407 g010
Figure 11. Comparison of growth rates of P. galeata and M. aeruginosa under different light intensities. The central lines indicate the median, and the bottom and top edges of each box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points that were not considered outliers, and the circles indicate the mean value.
Figure 11. Comparison of growth rates of P. galeata and M. aeruginosa under different light intensities. The central lines indicate the median, and the bottom and top edges of each box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points that were not considered outliers, and the circles indicate the mean value.
Water 12 00407 g011

Share and Cite

MDPI and ACS Style

Muhetaer, G.; Asaeda, T.; Jayasanka, S.M.D.H.; Baniya, M.B.; Abeynayaka, H.D.L.; Rashid, M.H.; Yan, H. Effects of Light Intensity and Exposure Period on the Growth and Stress Responses of Two Cyanobacteria Species: Pseudanabaena galeata and Microcystis aeruginosa. Water 2020, 12, 407. https://doi.org/10.3390/w12020407

AMA Style

Muhetaer G, Asaeda T, Jayasanka SMDH, Baniya MB, Abeynayaka HDL, Rashid MH, Yan H. Effects of Light Intensity and Exposure Period on the Growth and Stress Responses of Two Cyanobacteria Species: Pseudanabaena galeata and Microcystis aeruginosa. Water. 2020; 12(2):407. https://doi.org/10.3390/w12020407

Chicago/Turabian Style

Muhetaer, Guligena, Takashi Asaeda, Senavirathna M. D. H. Jayasanka, Mahendra B. Baniya, Helayaye D. L. Abeynayaka, M. Harun Rashid, and HongYu Yan. 2020. "Effects of Light Intensity and Exposure Period on the Growth and Stress Responses of Two Cyanobacteria Species: Pseudanabaena galeata and Microcystis aeruginosa" Water 12, no. 2: 407. https://doi.org/10.3390/w12020407

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop