Your Destination for Mobility Engineering Resources

Recent EDGE Research Reports

Browse All 142

Latest Journal Issues

Browse All 16

Recent Books

Browse All 935

Recently Published

Browse All
The paramount importance of titanium alloy in implant materials stems from its exceptional qualities, yet the optimization of bone integration and mitigation of wear and corrosion necessitate advanced technologies. Consequently, there has been a surge in research efforts focusing on surface modification of biomaterials to meet these challenges. This project is dedicated to enhancing the surface of titanium alloys by employing shot peening and powder coatings of titanium oxide and zinc oxide. Comparative analyses were meticulously conducted on the mechanical and wear properties of both treated and untreated specimens, ensuring uniformity in pressure, distance, and time parameters across all experiments. The outcomes underscore the efficacy of both methods in modifying the surface of the titanium alloy, leading to substantial alterations in surface properties. Notably, the treated alloy exhibited an impressive nearly 12% increase in surface hardness compared to its untreated counterpartBalasubramanian, K.Bragadeesvaran, S. R.Raja, R.Jannet, Sabitha
This SAE Aerospace Recommended Practice (ARP) provides minimum standards and environmental design requirement recommendations for lighting and control in galley areas. It also addresses electrical shock hazard in galley areas. The use of “shall” in this document expresses provisions that are binding. Non-mandatory provisions use the term “shouldA-20C Interior Lighting
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control and performance. It focuses on recommended practices specific to antiskid and its integration with the aircraft, as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2 for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1 ARP4754 2 ARP4761 3 RTCA DO-178 4 RTCA DO-254 5 RTCA DO-160 6 ARP490 7 ARP1383 8 ARP1598 In addition, it covers design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, as well as methods of determining and evaluating antiskid system performance. For definitions ofA-5A Wheels, Brakes and Skid Controls Committee
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systemsA-5A Wheels, Brakes and Skid Controls Committee
This document presents a study on the design and simulation of a high-lift airfoil intended for usage in multielement setups such as the wings present on open-wheel race cars. With the advancement of open-wheel race car aerodynamics, the design of existing high-lift airfoils has been altered to create a more useful and practical general profile. Adjoint optimization tools in CFD (ANSYS Fluent) were employed to increase the airfoil’s performance beyond existing high-lift profiles (Selig S1223). Improvements of up to 20% with a CL of 2.4 were recorded. To further evaluate performance, the airfoil was made the basis of a full three-dimensional aerodynamics package design for an open-wheel Formula Student car. CFD simulations were carried out on the same and revealed performance characteristics of the airfoil in a more practical application. These CFD simulations were calibrated with experimental values from coast-down testing data with an accuracy of 8Karthikeyan, Prthik NandhanRadhakrishnan, Jayakrishnan
The transportation sector’s growing focus on addressing environmental and sustainable energy concerns has led to a pursuit of the decarbonization path. In this context, hydrogen emerges as a promising zero-carbon fuel. The ability of hydrogen fuel to provide reliable performance while reducing environmental impact makes it crucial in the quest for net zero targets. This study compares gasoline and hydrogen combustion in a single-cylinder boosted direct injection (DI) spark ignition engine under various operating conditions. Initially, the engine was run over a wide range of lambda values to determine the optimal operating point for hydrogen and demonstrate lean hydrogen combustion’s benefits over gasoline combustion. Furthermore, a load sweep test was conducted at 2000 rpm, and the performance and emission results were compared between gasoline and optimized hydrogen combustion. An in-depth analysis was conducted by varying fuel injection time and pressure. This enabled us to exploreMohamed, MohamedBiswal, AbinashWang, XinyanZhao, HuaHarrington, AnthonyHall, Jonathan
David, AharonMuelaner, Jody E.Rezende, Rene Nardi
Bush, JuliaSouweidane, NaseebMuelaner, Jody E.
Kolodziejczyk, BartKozumplik, Brian
Barkan, TerranceWalthall, RhondaDixit, SunilDavid, AharonWebb, PhilipFletcher, Sarah
Walthall, RhondaDavid, AharonFarell, JamesHann, RichardJohansen, Tor A.
Lin, RuiMuelaner, Jody E.Kolodziejczyk, Bart
Barkan, TerranceCoyner, KelleyBittner, JasonKolodziejczyk, BartJiang, Yuxiang
Khan, SamirWalthall, RhondaRajamani, RaviHolland, Steve
This SAE Aerospace Recommended Practice (ARP) provides recommended test requirements for electrohydrostatic actuators (EHAsA-6B2 Electrohydrostatic Actuation Committee
This document covers the recommended practice for determining the acceptability of the dendrite arm spacing (DAS) of D357-T6 aluminum alloy castings required to have tensile strength not lower than 50 ksi (345 MPaAMS D Nonferrous Alloys Committee