Challenge problems

1. For a positive integer n, the (discrete) Fourier transform of a function $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}$ is the function $\hat{f}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}$ defined as

$$
\hat{f}(b)=\frac{1}{\sqrt{n}} \sum_{a=0}^{n-1} f(a) \exp (2 \pi i a b / n) .
$$

We say that f is flat if $|f(a)|=1$ for all $a \in \mathbb{Z} / n \mathbb{Z}$.
Give an example of a function $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}$ such that both f and \hat{f} are flat, for each $n \in\{2,3,4,6\}$.
Bonus question: Can you find such an f when n is an arbitrary odd prime number?
2. Consider a positive integer n and a function $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}$ such that both f and \hat{f} are flat in the sense of the previous problem. Let $s \in \mathbb{Z} / n \mathbb{Z}$ be a fixed element (assumed to be unknown, and called the hidden shift) and consider the shifted function $g(a)=f(a-s)$. Assume we have access to the following quantum oracles (unitary operators on a quantum register indexed by $\mathbb{Z} / n \mathbb{Z}$, given by their action on basis states $|a\rangle)$:

- the quantum Fourier transform, sending $|a\rangle$ to $\frac{1}{\sqrt{n}} \sum_{b=0}^{n-1} \exp (2 \pi i a b / n)|b\rangle$;
- the inverse quantum Fourier transform, sending $|b\rangle$ to $\frac{1}{\sqrt{n}} \sum_{a=0}^{n-1} \exp (-2 \pi i a b / n)|a\rangle$;
- an oracle for g, sending $|a\rangle$ to $g(a)|a\rangle$;
- an oracle for $1 / \hat{f}$, sending $|b\rangle$ to $\hat{f}(b)^{-1}|b\rangle$.

Give a quantum algorithm that determines the hidden shift s with probability 1 , using each of the oracles for g and $1 / \hat{f}$ at most once.
3. Let p be a prime number and let $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ be the field of p elements. Let \mathbb{F}_{p}^{\times}be its unit group, i.e. the group of invertible residue classes modulo p. (It is known that \mathbb{F}_{p}^{\times}is cyclic.) We consider a non-constant group homomorphism $\chi: \mathbb{F}_{p}^{\times} \rightarrow \mathbb{C}^{\times}$. Let $s \in \mathbb{F}_{p}$. Determine the value of the sum

$$
\sum_{\substack{a \in \mathbb{F}_{p} \\ a \neq 0, s}} \overline{\chi(a)} \chi(a-s) .
$$

(Your answer may depend on p, χ and s.)
4. With the notation as in the previous problem, consider in addition a non-constant group homomorphism $\psi: \mathbb{F}_{p} \rightarrow \mathbb{C}^{\times}$where \mathbb{F}_{p} is viewed as an additive group, so that ψ satisfies $\psi(a+b)=\psi(a) \psi(b)$. We define

$$
G=\sum_{a \in \mathbb{F}_{\mathcal{P}}^{\times}} \psi(a) \chi(a) .
$$

Show that $|G|=\sqrt{p}$.

