Challenge problems

1. For a positive integer n, the (discrete) Fourier transform of a function $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}$ is the function $\hat{f}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}$ defined as

$$\hat{f}(b) = \frac{1}{\sqrt{n}} \sum_{a=0}^{n-1} f(a) \exp(2\pi i a b/n).$$

We say that f is flat if |f(a)| = 1 for all $a \in \mathbb{Z}/n\mathbb{Z}$.

Give an example of a function $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}$ such that both f and \hat{f} are flat, for each $n \in \{2, 3, 4, 6\}$.

Bonus question: Can you find such an f when n is an arbitrary odd prime number?

- 2. Consider a positive integer n and a function $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}$ such that both f and \hat{f} are flat in the sense of the previous problem. Let $s \in \mathbb{Z}/n\mathbb{Z}$ be a fixed element (assumed to be unknown, and called the hidden shift) and consider the shifted function g(a) = f(a s). Assume we have access to the following quantum oracles (unitary operators on a quantum register indexed by $\mathbb{Z}/n\mathbb{Z}$, given by their action on basis states $|a\rangle$):
 - the quantum Fourier transform, sending $|a\rangle$ to $\frac{1}{\sqrt{n}}\sum_{b=0}^{n-1}\exp(2\pi iab/n)\,|b\rangle;$
 - the inverse quantum Fourier transform, sending $|b\rangle$ to $\frac{1}{\sqrt{n}}\sum_{a=0}^{n-1}\exp(-2\pi iab/n)|a\rangle$;
 - an oracle for g, sending $|a\rangle$ to $g(a)|a\rangle$;
 - an oracle for $1/\hat{f}$, sending $|b\rangle$ to $\hat{f}(b)^{-1}|b\rangle$.

Give a quantum algorithm that determines the hidden shift s with probability 1, using each of the oracles for g and $1/\hat{f}$ at most once.

3. Let p be a prime number and let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ be the field of p elements. Let \mathbb{F}_p^{\times} be its unit group, i.e. the group of invertible residue classes modulo p. (It is known that \mathbb{F}_p^{\times} is cyclic.) We consider a non-constant group homomorphism $\chi \colon \mathbb{F}_p^{\times} \to \mathbb{C}^{\times}$. Let $s \in \mathbb{F}_p$. Determine the value of the sum

$$\sum_{\substack{a \in \mathbb{F}_p \\ a \neq 0, s}} \overline{\chi(a)} \chi(a-s).$$

(Your answer may depend on p, χ and s.)

4. With the notation as in the previous problem, consider in addition a non-constant group homomorphism $\psi \colon \mathbb{F}_p \to \mathbb{C}^{\times}$ where \mathbb{F}_p is viewed as an additive group, so that ψ satisfies $\psi(a+b) = \psi(a)\psi(b)$. We define

$$G = \sum_{a \in \mathbb{F}_p^{\times}} \psi(a) \chi(a).$$

Show that $|G| = \sqrt{p}$.