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Abstract. Inverse-propensity scoring and neural click models are two
popular methods for learning rankers from user clicks that are affected
by position bias. Despite their prevalence, the two methodologies are
rarely directly compared on equal footing. In this work, we focus on the
pointwise learning setting to compare the theoretical differences of both
approaches and present a thorough empirical comparison on the preva-
lent semi-synthetic evaluation setup in unbiased learning-to-rank. We
show theoretically that neural click models, similarly to IPS rankers, op-
timize for the true document relevance when the position bias is known.
However, our work also finds small but significant empirical differences
between both approaches indicating that neural click models might be af-
fected by position bias when learning from shared, sometimes conflicting,
features instead of treating each document separately.

1 Introduction

Learning-to-rank a set of items based on their features is a crucial part of many
real-world search [9, 23, 37, 42] and recommender systems [15, 20, 55]. Tradi-
tional supervised learning-to-rank uses human expert annotations to learn the
optimal order of items [8, 9, 31]. However, expert annotations are expensive to
collect [9] and can be misaligned with actual user preference [41]. Instead, the
field of unbiased learning-to-rank seeks to optimize ranking models from implicit
user feedback, such as clicks [1, 28, 34, 49, 50]. One well-known problem when
learning from click data is that the position at which an item is displayed affects
how likely a user is to see and interact with it [16, 27, 28, 47, 50]. Click mod-
eling [14, 16, 19, 21, 39] and inverse-propensity scoring (IPS) [1, 25, 28, 35, 45]
are two popular methods for learning rankers from position-biased user feed-
back. IPS-based counterfactual learning-to-rank methods mitigate position bias
by re-weighting clicks during training inversely to the probability of a user ob-
serving the clicked item [28, 49]. In contrast, click models are generative models
that represent position bias and item relevance as latent parameters to directly
predict biased user behavior [14, 16, 19, 21, 39].

IPS approaches were introduced to improve over click models [28, 49] by:
(i) requiring less observations of the same query-document pair by representing
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items using features instead of inferring a separate relevance parameter for each
document [1, 28, 49, 50]; (ii) decoupling bias and relevance estimations into
separate steps since the joint parameter inference in click models can fail [2, 32,
50]; and (iii) optimizing the order of documents through pairwise [25, 28] and
listwise loss [34] functions instead of inferring independent pointwise relevance
estimations for each document [28, 50].

At the same time, neural successors of click models have been introduced [7,
13, 22, 23, 54, 55] that can leverage feature inputs, similarly to IPS-based rankers.
Moreover, pointwise IPS methods have been presented that address the same
ranking setting as click models [5, 40]. In this work, we ask if both approaches
are two sides of the same coin when it comes to pointwise learning-to-rank?

To address this question, we first introduce both approaches (Sections 2,
3) and show theoretically that both methods are equivalent when the position
bias is known (Section 4). We then compare both approaches empirically on
the prevalent semi-synthetic benchmarking setup in unbiased learning-to-rank
(Section 5) and find small but significant differences in ranking performance
(Section 6.1). We conclude by investigating the found differences by performing
additional experiments (Section 6.2) and hypothesize that neural click models
might be affected by position bias when learning from shared, sometimes con-
flicting, document features.

The main contributions of this work are:
(1) A theoretical analysis showing that a PBM click model optimizes for unbi-

ased document relevance when the position bias is known.
(2) An empirical evaluation of both methods on three large semi-synthetic click

datasets revealing small but significant differences in ranking performance.
(3) An analysis of the empirical differences that hint at neural click models

being affected by position bias when generalizing over conflicting document
features instead of treating each document separately.

2 Related work

We provide an overview of probabilistic and neural click models, IPS-based coun-
terfactual learning-to-rank, and comparisons between the two methodologies.
Click models. Probabilistic click models emerged for predicting user interac-
tions in web search [14, 16, 39]. Factors that impact a user’s click decision, such
as an item’s probability to be seen or its relevance are explicitly modeled as
random variables, which are jointly inferred using maximum likelihood estima-
tion on large click logs [14]. An early but prevailing model is the position-based
model (PBM), which assumes that a click on a given item only depends on its
position and relevance [16, 39]. Another prominent approach, the cascade model,
assumes that users scan items from top to bottom and click on the first relevant
item, not examining the documents below [16]. Follow-up work extends these
approaches to more complex click behavior [11, 19, 21, 48], more elaborate user
interfaces [52, 53], and feedback beyond clicks [18]. We refer to Chuklin et al.
[14] for an overview.
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Recent click models use complex neural architectures to model non-sequential
browsing behavior [56] and user preference across sessions [12, 30]. Additionally,
exact identifiers of items are typically replaced by more expressive feature repre-
sentations [22, 54, 56]. In contrast to ever more complicated click models, neural
implementations of the classic PBM recently gained popularity in industry appli-
cations [23, 54, 55]. So-called two-tower models input bias and relevance-related
features into two separate networks and combine the output to predict user
clicks [22, 54]. We use a neural PBM implementation similar to current two-
tower models in this work and our findings on click model bias might be relevant
to this community.
Counterfactual learning-to-rank. Joachims et al. introduced the concept
of counterfactual learning-to-rank [28], relating to previous work by Wang et
al. [49]. This line of work assumes a probabilistic model of user behavior, usually
the PBM [25, 28, 34, 40] or cascade click model [46], and uses inverse-propensity
scoring to mitigate the estimated bias from click data. The first work by Joachims
et al. [28] introduced an unbiased version of the pairwise RankSVM method,
Hu et al. [25] introduced a modified pairwise LambdaMART, and Oosterhuis
and de Rijke suggested an IPS-correction for the listwise LambdaLoss frame-
work [35]. Given that click models are pointwise rankers [50], we use a pointwise
IPS method introduced by Bekker et al. [5] and later Saito et al. [40].
Comparing click models and IPS. Lastly, we discuss related work comparing
IPS and click models. To our knowledge, Wang et al. [50] conduct the only ex-
periment that compares both approaches on a single proprietary dataset. Their
RegressionEM approach extends a probabilistic PBM using logistic regression to
predict document relevance from item features instead of inferring separate rel-
evance parameters per document. While the main motivation behind their work
is to obtain better position bias estimates to train a pairwise IPS model, the
authors also report the ranking performance of the inferred logistic regression
model which can be seen as a component of a single-layer neural click model.
The authors find that the click model improves rankings over a baseline not
correcting for position bias, but is outperformed by a pairwise IPS approach [50,
Table 4]. The authors also include two pointwise IPS approximations which are
less effective than the click model and also fail to outperform the biased base-
line model. Therefore, it is unclear how current pointwise methods suggested
by Bekker et al. [5] and Saito et al. [40] would compare. We compare a recent
pointwise IPS method with a common neural PBM implementation and report
experiments on three public LTR dataset unifying model architecture, hyperpa-
rameter tuning, and position bias estimation to avoid confounding factors.

Lastly, recent theoretical work by Oosterhuis [32] compares click models and
IPS and their limits for unbiased learning-to-rank. Their work finds that IPS-
based methods can only correct for biases that are an affine transformation
of item relevance. For click models jointly inferring both relevance and bias
parameters, they find no robust theoretical guarantees of unbiasedness and find
settings in which even an infinite amount of clicks will not lead to inferring the
true model parameters. We will discuss this work in more detail in Section 4 and
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extend their analysis to show that a click model only inferring item relevance
should be in-fact unbiased.

3 Background

We introduce our assumptions on how position bias affects users, the neural click
model, and IPS approach that we compare in this work.
A model of position bias. We begin by assuming a model of how position
bias affects the click behavior of users. For this work, we resort to the prevalent
model in unbiased learning-to-rank, the position-based model (PBM) [16, 39].
Let P (Y = 1 | d, q) be the probability of a document d being relevant to a given
search query q and P (O = 1 | k) the probability of observing a document at
rank k ∈ K,K = {1, 2, . . .}; then we assume that clicks occur only on items that
were observed and relevant:

P (C = 1 | d, q, k) = P (O = 1 | k) · P (Y = 1 | d, q)
cd,k = ok · yd.

(1)

For brevity, we use the short notation above for the rest of the paper and drop
the subscript q in all of our formulas assuming that the document relevance yd
is always conditioned on the current query context.
A neural position-based click model. A neural click model directly mir-
rors the PBM user model introduced in the previous section in its architec-
ture [7, 13, 22, 54]. We use a neural network g to estimate document relevance
ŷd from features xd and estimate position bias ôk using a single parameter per
rank denoted by f(k). We use sigmoid activations and multiply the resulting
probabilities:

ĉd,k = σ(f(k)) · σ(g(xd))

ĉd,k = ôk · ŷd.
(2)

A common choice to fit neural click models is the binary cross-entropy loss
between predicted and observed clicks in the dataset [22, 23, 54–56]:

Lpbm(ŷ, ô) = −
∑

(d,k)∈D

cd,k · log(ŷd · ôk) + (1− cd,k) · log(1− ŷd · ôk). (3)

A pointwise IPS model. Instead of predicting clicks, IPS directly predicts
the document relevance ŷd and assumes an estimation of the position bias ôk
is given [28, 40]. Thus, the IPS model we assume in this work only uses the
relevance network g:

ŷd = g(xd). (4)
Bekker et al. [5] introduce a pointwise IPS loss that minimizes the binary cross-
entropy between predicted and true document relevance. Note how the PBM
assumption is used to recover the unbiased document relevance by dividing clicks
by the estimated position bias ôk:

Lips(ŷ, ô) = −
∑

(d,k)∈D

cd,k
ôk

· log(ŷd) +
(
1− cd,k

ôk

)
· log(1− ŷd). (5)
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4 Methods

4.1 Comparing unbiasedness

In this section, we compare the ability of the neural click model and pointwise
IPS ranker to recover the unbiased relevance of an item under position bias. We
begin by noting that in the trivial case in which there is no position bias, i.e.,
clicks are an unbiased indicator of relevance, both approaches are identical.

Proposition 1. When correctly assuming that no position bias exists, i.e., ∀k ∈
K, ok = ôk = 1, the click model and pointwise IPS method are equivalent:

E [Lips(ŷ, ô)] = E [Lpbm(ŷ, ô)] = −
∑

(d,k)∈D

yd · log(ŷd) + (1− yd) · log(1− ŷd).

Second, both approaches also collapse to the same (biased) model in the case of
not correcting for an existing position bias in the data.

Proposition 2. When falsely assuming that no position bias exists, i.e., ∀k ∈
K, ôk = 1 ∧ ok < 1, the click model and pointwise IPS method are equivalently
biased:

E [Lips(ŷ, ô)] = E [Lpbm(ŷ, ô)] = −
∑

(d,k)∈D

ydok · log(ŷd) + (1− ydok) · log(1− ŷd).

However, how do both approaches compare when inferring the unbiased docu-
ment relevance under an existing position bias? Saito et al. [40] show that Lips(ŷ)
is unbiased if the position bias is correctly estimated, ∀k ∈ K, ôk = ok and users
actually behave according to the PBM [40, Proposition 4.3]). The notion of an
unbiased estimator is harder to apply to neural click models, since relevance is
a parameter to be inferred. Instead of unbiasedness, Oosterhuis [32] looks into
consistency of click models and shows that click models jointly estimating both
bias and relevance parameters are not consistent estimators of document rele-
vance. This means that there are rankings in which even infinite click data will
not lead to the true document relevance estimate.

But what happens if click models do not have to jointly estimate bias and rel-
evance parameters, but only item relevance? Since IPS approaches often assume
access to a correctly estimated position bias [1, 28, 34, 40, 45], we investigate
this idealized setting for the click model and show that initializing the model pa-
rameters ôk with the true position bias leads to an unbiased relevance estimate.

Theorem 1. The click model is an unbiased estimator of relevance when given
access to the true position bias:

E [ŷd] =
okyd
ôk

,∀k ∈ K, ôk = ok. (6)

Proof. We begin by taking the partial derivative of Lpbm with regard to the
estimated document relevance ŷ in our click model. Since the model factorizes,
for ease of notation we will look at a single document and single observation:
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∂Lpbm

∂ŷ
= −

(
c · ∂

∂ŷ
[log(ôŷ)] + (1− c) · ∂

∂ŷ
[log(1− ôŷ)]

)
= −

(
c · ô

ôŷ
+ (1− c) · −ô

1− ôŷ

)
= −

(
c

ŷ
+

−ô+ ôc

1− ôŷ

)
= − c− ôŷ

ŷ(1− ôŷ)
.

(7)

Next, we find the ideal model minimizing the loss by finding the roots of the
derivative. We note that this function is convex and any extrema found will be
a minimum:

∂Lpbm

∂ŷ
= 0

− c− ôŷ

ŷ(1− ôŷ)
= 0

ŷ =
c

ô
.

(8)

Lastly, in expectation we see that the obtained relevance estimate is the true
document relevance when the estimated and true position bias are equal:

E [ŷ] =
E [c]

ô

E [ŷ] =
oy

ô
.

(9)

Thus, given the correct position bias, we find that both the click model and IPS
objective optimize for the unbiased document relevance, suggesting a similar
performance in an idealized benchmark setup. But before covering our empirical
comparison, we want to note one additional difference of both loss functions.

4.2 A difference in loss magnitude

We note one difference between the click model and IPS-based loss functions
concerning their magnitude and relationship with position bias. While IPS-based
loss functions are known to suffer from high variance due to dividing clicks by
potentially small probabilities [44, 51], the neural click model seems to suffer
from the opposite problem since both yd,k and ŷd,k (assuming our user model
is correct) are multiplied by a potentially small examination probability. Thus,
independent of document relevance, items at lower positions have a click proba-
bility closer to zero, impacting the magnitude of the loss (and gradient). Fig. 1
visualizes the loss for a single item of relevance yd = 0.5 under varying degrees
of position bias. While the pointwise IPS loss in expectation of infinite clicks
always converges to the same distribution, the click model’s loss gets smaller in
magnitude with an increase in position bias. While the magnitude differs, the
minimum of the loss, as shown earlier in Section 4.1, is still correctly positioned
at 0.5. We will explore if this difference in loss magnitude might negatively im-
pact items at lower positions in our upcoming experiments.
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Fig. 1: Visualizing Lpbm on the left and Lips on the right for a single document
of relevance yd = 0.5 under varying degrees of position bias.

Table 1: Overview of the LTR datasets used in this work.
Dataset #Features #Queries %Train / val / test #Documents per query

min mean med. p90 max

MSLR-WEB30K 136 31,531 60 / 20 / 20 1 120 109 201 1,251
Istella-S 220 33,018 58.3 / 19.9 / 21.8 3 103 120 147 182
Yahoo! Webscope 699 29,921 66.6 / 10 / 23.3 1 24 19 49 139

5 Experimental setup

To compare click model and IPS-based approaches empirically, we use an evalu-
ation setup that is prevalent in unbiased learning-to-rank [24, 26, 28, 33, 35, 36,
45, 47]. The main idea is to use real-world LTR datasets containing full expert
annotations of item relevance to generate synthetic clicks according to our user
model. Below, we describe the used datasets, the click generation procedure, as
well as model implementation and training.
Datasets. We use three large-scale public LTR datasets to simulate synthetic
user clicks: MSLR-WEB30k [37], Istella-S [17], and Yahoo! Webscope [9]. Each
query-document pair is represented by a feature vector xd and is accompanied by
a score sd ∈ {0, 1, 2, 3, 4} indicating relevance as judged by a human annotator.
Table 1 contains an overview of the dataset statistics. During preprocessing,
we normalize the document feature vectors of MSLR-WEB30k and Istella-S
using log1p(xd) = loge(1 + |xd|) ⊙ sign(xd), as recently suggested by Qin et al.
[38]. The features of Yahoo! Webscope come already normalized [9]. We use
stratified sampling to limit each query to contain at most the 90th percentile
number of documents (Table 1), improving computational speed while keeping
the distribution of document relevance in the datasets almost identical.
Simulating user behavior. Our click simulation setup closely follows [45, 47].
First, we train a LightGBM [29] implementation of LambdaMART [8] on 20 sam-
pled train queries with fully supervised relevance annotations as our production
ranker.3 The intuition is to simulate initial rankings that are better than random
but leave room for further improvement.

3 LightGBM Version 3.3.2, using 100 trees, 31 leafs, and learning rate 0.1.
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We generate up to 100 million clicks on our train and validation sets by re-
peatedly: (i) sampling a query uniformly at random from our dataset; (ii) ranking
the associated documents using our production ranker; and (iii) generating clicks
according to the PBM user model (Eq. 1). As in [45], we generate validation clicks
proportional to the train / validation split ratio in each dataset (Table 1). When
sampling clicks according to the PBM, we use the human relevance labels pro-
vided by the datasets as ground truth for the document relevance yd. We use a
graded notion of document relevance [3, 4, 10, 25] and add click noise of ϵ = 0.1
to also sample clicks on documents of zero relevance:

yd = ϵ+ (1− ϵ) · 2
sd − 1

24 − 1
. (10)

We follow Joachims et al. [28] and simulate the position bias for a document at
rank k after preranking as:

ok =

(
1

k

)η

(11)

The parameter η controls the strength of position bias; η = 0 corresponds to no
position bias. We use a default of η = 1. Lastly, we apply an optimization step
from [34] and train on the average click-through-rate of each query-document
pair instead of the actual sampled raw click data [34, Eq. 39]. This allows us to
scale our simulation to millions of queries and multiple repetitions while keep-
ing the computational load almost constant. Our experimental results hold up
without this trick.
Model implementation and training. We estimate document relevance from
features using the same network architecture g(xd) for both the click model
and IPS-based ranker. Similar to [45, 46], we use a three layer feed-forward
network with [512, 256, 128] neurons, ELU activations, and dropout 0.1 in the
last two layers. We pick the best-performing optimizer4 and learning rate5 over
five independent runs on the validation set for each model. In all experiments,
we train our models on the synthetic click datasets up to 200 epochs and stop
early after five epochs of no improvement of the validation loss. We do not clip
propensities in the IPS model to avoid introducing bias [1, 28].
Experimental runs. We follow related work and report the final evaluation
metrics on the original annotation scores of the test set [1, 28, 34]. We test differ-
ences for significance using a two-tailed student’s t-test [43], apply the Bonferroni
correction [6] to account for multiple comparisons, and use a significance level of
α = 0.0001. All results reported in this work are evaluated over ten independent
simulation runs with different random seeds. We compare five models:
IPS / PBM - Naive: A version of both models that does not compensate for

position bias. In this case both models are equivalent (Proposition 2).
IPS - True bias: Pointwise IPS ranker with access to the true simulated posi-

tion bias.
PBM - Estimated bias: Neural PBM jointly inferring position bias and doc-

ument relevance during training.
4 optimizer ∈ {Adam,Adagrad, SGD}
5 learning rate ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}
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Fig. 2: Test performance after training on up to 100M simulated queries. All
results are averaged over ten independent runs, and we display a bootstrapped
95% confidence interval.

PBM - True bias: Neural PBM initialized with the true position bias; the bias
is fixed during training.

Production ranker: LambdaMART production ranker used to pre-rank queries
during simulation.

6 Results and analysis

We examine if the neural click model and pointwise IPS models are empirically
equivalent in a semi-synthetic click simulation.

6.1 Main findings

Fig. 2 displays the test performance of all model combinations when training up
to 100M simulated queries; full tabular results are available in Table 2. Inspecting
Fig. 2, we first note that all approaches improve over the initial rankings provided
by the production ranker. The version of both models not correcting for position
bias (IPS / PBM - Naive) converges to its final, suboptimal, performance after
one million clicks. Significantly improving over the naive baseline on two out
of three datasets (except Istella-S ) is the neural click model jointly estimating
position bias and relevance (PBM - Estimated bias).

Next, we see that providing the PBM - True Bias model with access to the
correct position bias stabilizes and improves performance significantly over the
naive baseline on all datasets. While having a lower variance, the improvements
over PBM - Estimated Bias are not significant on any of the datasets. The IPS
- True bias model is less effective than the neural click models for the first 100k
clicks but ends up outperforming the click model significantly on two of the three
LTR datasets (Istella-S and Yahoo! Webscope). These differences under idealized
conditions between pointwise IPS and the click model are small, but significant.
And to our surprise, the neural click model performs worse than the pointwise
IPS model, even with access to the true position bias.

In Theorem 1, we prove that click models can recover unbiased document
relevance when the position bias is accurately estimated. However, our empirical
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Table 2: Ranking performance on the full-information test set after 100M train
queries as measured in nDCG and Average Relevant Position (ARP) [28]. Results
are averaged over ten independent runs, displaying the standard deviation in
parentheses. We mark significantly higher ▲ or lower performance ▼ compared
to the PBM - True bias model using a significance level of α = 0.0001.
Dataset Model nDCG@5 ↑ nDCG@10 ↑ ARP ↓

MSLR-WEB30K

Production 0.301 (0.027) ▼ 0.330 (0.024) ▼ 49.223 (0.693) ▲
Naive 0.348 (0.022) ▼ 0.370 (0.020) ▼ 48.386 (0.538) ▲
PBM - Est. Bias 0.429 (0.010) 0.449 (0.008) 44.835 (0.274)
PBM - True Bias 0.428 (0.006) 0.447 (0.006) 44.965 (0.230)
IPS - True Bias 0.432 (0.011) 0.454 (0.010) 44.418 (0.227)

Istella-S

Production 0.566 (0.012) ▼ 0.632 (0.010) ▼ 10.659 (0.207) ▲
Naive 0.616 (0.005) ▼ 0.683 (0.005) ▼ 9.191 (0.154) ▲
PBM - Est. Bias 0.629 (0.008) 0.692 (0.007) 10.605 (1.193)
PBM - True Bias 0.638 (0.003) 0.703 (0.004) 8.911 (0.212)
IPS - True Bias 0.656 (0.005) ▲ 0.724 (0.004) ▲ 8.274 (0.141) ▼

Yahoo! Webscope

Production 0.613 (0.012) ▼ 0.671 (0.009) ▼ 10.439 (0.095) ▲
Naive 0.647 (0.006) ▼ 0.699 (0.004) ▼ 10.199 (0.052) ▲
PBM - Est. Bias 0.673 (0.005) 0.722 (0.003) 9.848 (0.055)
PBM - True Bias 0.680 (0.004) 0.728 (0.003) 9.812 (0.035)
IPS - True Bias 0.695 (0.001) ▲ 0.741 (0.001) ▲ 9.658 (0.011) ▼

evaluation indicates a difference between click model and IPS-based approaches,
even under the idealized conditions assumed in this setup: unlike the IPS-based
approach, the neural click model may suffer from bias. Given this observed dif-
ference, we conduct further analyses by revisiting the effect of position bias on
the magnitude of the click model’s loss discussed earlier in Section 4.2.

6.2 Further analyses

Our first hypothesis to explain the lower performance of the neural click model
concerns hyperparameter tuning. Section 4.2 shows that the click model loss
decreases with an increase in position bias. Through manual verification, we
find that items at lower positions have smaller gradient updates, affecting the
choice of learning rate and the number of training epochs. While this is a con-
cern when using SGD, our extensive hyperparameter tuning and use of adaptive
learning rate optimizers should mitigate this issue (Section 5). Hence, we reject
this hypothesis.

Instead, we hypothesize that higher ranked items might overtake the gradient
of lower ranked items, given their higher potential for loss reduction. This case
might occur when encountering two documents with similar features but differ-
ent relevance. The item at the higher position could bias the expected relevance
towards its direction. This is indeed what we find when simulating a toy sce-
nario with two documents in Figure 3. There, we display one relevant but rarely
observed document (red triangle) and one irrelevant but always observed item
(orange square). Both click model and IPS approaches converge to the correct
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Fig. 3: Visualizing the loss and estimated document relevance of two documents
when calculated separately (dotted lines) and combined (solid line).
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Fig. 4: Experiments on one-hot encoded documents. All results are averaged over
ten independent runs. We display a bootstrapped 95% confidence interval.

document relevance when computing the loss for each item separately, but when
computing the combined average loss, the IPS approach converges to the mean
relevance of both items while the click model is biased towards the item with
the higher examination probability.

One can frame this finding as an instance of model misfit. Theorem 1 demands
a separate parameter ŷd for each query-document pair, but by generalizing over
features using the relevance network g, we might project multiple documents
onto the same parameter ŷd, which might be problematic when features do not
perfectly capture item relevance. We test our hypothesis that the click model’s
gradient updates are biased towards items with higher examination probabilities
with three additional experiments.
No shared document features. First, we should see an equivalent perfor-
mance of both approaches in a setting in which documents share no features
since the gradient magnitude should not matter in this setting. We create a
fully synthetic dataset of 10,000 one-hot encoded vectors with uniform relevance
scores between 0 and 4. To avoid feature interactions, we reduce the depth of the
relevance network g to a single linear layer. We find in Fig. 4a that indeed both
approaches are able to recover the true document relevance. Every document
in the validation or test set appears once in the train dataset, thus achieving a
perfect ranking score (e.g., nDCG@10 = 1.0) is possible in this setting.
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Fig. 5: Simulating an increasing (known) position bias. We report test perfor-
mance after 100M clicks over 10 independent runs.

Feature collisions. Second, gradually forcing documents to share features by
introducing random feature collisions into our one-hot encoded dataset should
lead to a stronger drop in performance for the click model. At the start of each
simulation, we use a modulo operation to assign a share of documents based
on their id on to the same one-hot encoded feature vectors. Fig. 4b shows that
both approaches perform equivalently when each document has its own feature
vector. But when gradually introducing collisions, PBM - Estimated bias and
PBM - True bias deteriorate faster in performance than IPS - True bias.
Mitigating position bias. A last interesting consequence is that this prob-
lem should get worse with an increase in (known) position bias. Simulating an
increasing position bias and supplying the examination probabilities to both
approaches on Istella-S shows that IPS can recover consistently from high posi-
tion bias, while the click model deteriorates in performance with an increase in
position bias (Fig. 5).
In summary, we found strong evidence that when encountering documents of
different relevance but similar features, the neural click model biases its relevance
estimate towards items with higher exposure.

7 Conclusion

We have considered whether recent neural click models and pointwise IPS rankers
are equivalent for pointwise learning-to-rank from position-biased user clicks. We
show theoretically and empirically that neural click models and pointwise IPS
rankers achieve equal performance when the true position bias is known, and
relevance is estimated for each item separately. However, we also find small but
significant empirical differences, indicating that the neural click model may be
affected by position bias when learning from shared and potentially conflicting
document features.

Given the similarity of the neural PBM used in this work to current industry
trends [22, 23, 54, 55], we urge practitioners to investigate if their model archi-
tecture is vulnerable to the described bias, especially when representing items
using a small set of features or low dimensional latent embeddings. Potential di-
agnostic tools include simulating synthetic clicks or training a related pointwise
IPS method to test for performance improvements.
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We emphasize that our findings are specific to our neural PBM setup, and we
make no claims about other architectures, such as additive two-tower models [54]
or click models trained using expectation maximization [50]. We plan to further
investigate connections and differences between IPS and click models, extending
our evaluation beyond the pointwise setting to more sophisticated conditions
such as mixtures of user behavior and bias misspecification. We share our code
at https://github.com/philipphager/ultr-cm-vs-ips/
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